Introdujo la necesidad de demostrar las proposiciones matemáticas de manera inmaterial e intelectual, al margen de su sentido práctico. Los pitagóricos dividieron el saber científico en cuatro ramas: la aritmética o ciencia de los números − su lema era "todo es número" −, la geometría, la música y la astronomía.
Descubrió que existía una estrecha relación entre la armonía musical y la armonía de los números, puesto que si jalamos una cuerda obtenemos una nota. Cuando la longitud de la cuerda se reduce a la mitad, (en relación 1:2) obtenemos una octava y así sucesivamente.
El teorema de Pitágoras tiene gran cantidad de demostraciones, incluso el señor Scott Loomis recopiló información y publicó a principios del siglo XX que tenía 367 demostraciones, aunque obviamente existe un margen de error. El teorema de Pitágoras es el siguiente:
Hipsicles de Alejandría (Siglo II a.C.) va a proporcionar la definición de número poligonal de d lados y orden n de una forma que algebraicamente equivale a la fórmula N (n,d) = n+ 1/2 n ( n −1) ( d −2 )
Euclides en el libro más famoso de la Historia de las Matemáticas recopiló gran parte de los conocimientos
Pitagóricos sobre los números. Así mismo, definió los números primos y compuestos de forma geométrica: un número entero es compuesto cuando tiene divisores distintos de él mismo y de la unidad, es decir cuando se puede dibujar como un rectángulo numérico.
En el libro IX de los Elementos, Euclides nos deja perplejos con su proposición 36, que proporciona un método original para encontrar números perfectos, la cual es:
"Si tantos números como se quiera a partir de una unidad se disponen en proporción duplicada hasta que su total resulte primo, y el total multiplicado por el último produce algún número, el producto será perfecto".
Lo que se refiere a "Si la suma de las n primeras potencias de 2 es un número primo, entonces el producto de la suma por la última potencia sumada es un número perfecto".
Si (1+2+22+...+2n) es primo, entonces (1+2+22+...+2n)·2n es perfecto.
Franklin Johan Díaz Hernández
C.I. 14.782.819
EES SECC: 1
Sir Thomas L. Heath, A Manual of Greek Mathematics, Dover, 1963, p. 1: "In the case of mathematics, it is the Greek contribution which it is most essential to know, for it was the Greeks who first made mathematics a science."
Victor J. Katz (1995), "Ideas of Calculus in Islam and India", Mathematics Magazine 68 (3): 163–74.
No hay comentarios:
Publicar un comentario